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Abstract

Separating authentic content and Al-generated images is increasingly difficult. So-
lutions using foundation models like CLIP are not ideal for deepfake detection,
lacking specialized training and local image features. We propose Contrastive
Deepfake Embeddings (CoDE), an embedding space tailored for deepfake detec-
tion, trained via contrastive learning with global-local similarities on an in-house
dataset of 9.2 million generated images.
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The Limitations of Foundation Models

 The embedding spaces [1, 2, 3] are not tailored for deepfake detection.

* Models are vulnerable to unseen image processing techniques as proved in [9].
« CLIP smaller backbone is ViT-B (86M parameters), limiting the portability.

* |n the future foundation models could be trained on generated images too, lead-
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Contrastive Deepfake Embeddings (CoDE)
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* CoDE is based on a VIT-Tiny backbone employing only SM parameters.

 Training is conducted via Info-NCE loss [6] which is applied to both real and fake
images. The global loss Ly00a takes into account features representing global
views of the images. Differently, Lnuti-scae €nforce the similarity of features
extracted from local and global crops.

» Robustness to post-processing technigues is enforced by applying heavy image

Ing to the possibility of performance degradation related to data poisoning.
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Performance on Seen Generators

w/o Transforms w/ Transforms

Model Overall Real Fake Overall Real Fake DF-IF SD-1.4 SD-2.1 SD-XL
Wang et al. (RN50 Blur+JPEG 0.5)T  20.7 99.4 1.0 20.8 99.2 1.2 0.9 1.6 1.2 1.4
Wang et al. (RN50 Blur+JPEG 0.1)1 214 987 2.0 216 982 25 22 28 2.1 2.8
Gragnaniello et al. 21.8 99.7 2.3 21.8 99.5 2.3 1.4 4.2 1.5 21
Corvi et al.t /59 992 70.1 04.1 99.2 554 8.1 84.1 /6.0 53.3
Ojha et alt 31.0 96.1 14.8 37.7 87.0 254 11.3 24 .5 19.0 46.8
Wang et al. (DIRE)T 79.7 10.0 97.1 /6.5 15.8 91.7 89.6 92.4 91.5 93.1
VIiT-T (BCE) 97.0 914 984 93.7 93.8 93.6 92.1 93.5 92.7 96.4
CoDE (Linear) 98.0 94.0 99.0 95.7 956 958 94.8 95.8 94.9 97.5
CoDE (NN) 97.3 89.3 99.3 958 905 97.1 96.6 97.3 96.6 98.1
CoDE (SVM) 91.3 744 954 925 81.0 954 96.6 91.7 94 .4 99.0

 We combine CoDE with various classifiers, including Linear, Nearest Neighbor
(NN), and One-Class SVM (SVM). These classifiers are fitted on 10k records
(50000 images) of pre-processed images.

« CoDE demonstrates superior performance compared to SoTA detectors on seen
generators, excelling in both transformed and non-transformed images. In this
setting, CoDE achieves overall accuracies on raw images of 98%, 97.3%, and
91.3% with respectively Linear, NN, and SVM classifiers. Differently, when facing
post-processed images CoDE attains accuracies of 95.7%, 95.8%, 92.5% on

augmentation during training to enhance robustness.

Linear, NN, and SVM classifiers.

« When detecting unseen diffusion models, not encountered during training, CoDE
outperforms competitors, achieving average accuracies of 79.6% with the NN
classifier and 81.6% with the SVM classifier.
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only employing Lgiopai- Further, CoDE performs best when trained from scratch.
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Diffusion-generated Deepfake Detection (D°) dataset

Existing datasets for deepfake detection suffer from lim-
ited generator diversity and insufficient image quanti- SD-1.4 SD-2.1
ties. To address this, we have introduced the Diffusion- peiges
generated Deepfake Detection (D?) dataset, comprising
11.5 million images.
« Every entry in the dataset includes a prompt, an authentic image, and four Soft top Jeep CJ5 convertible Vinyl 19551975
images produced by four SoTA diffusion generators. Real DE-IF SD-1.4 SD.2 - SD-XL
* Prompts and corresponding real images are taken from LAION-400M [4], “
while fake images are generated, starting from prompts. To diversify the sy | A
dataset, images are generated with various aspect ratios, and different oA | e
encoding and compression methods are used, closely aligning with the |
encoding distribution of LAION. Christ Church College
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Performance on Unseen Generators Ablation Study on Training Losses
LDM GLIDE DALL-E w/o Transforms w/ Transforms
Model Guided 200 200 (CFG) 100  100(27) 50(27) 100(10) ~vi ~v2 v3  Midjourney  Avg Model Overall Real Fake  Overall Real Fake DF-IF SD-1.4 SD-2.1 SD-XL
Wang et al. (RN50 O.5)Jr 52.3 51.1 514 51.3 53.3 55.6 54.3 52.5 50.9 49.8 50.1 52.4
Wang etal. (RN50 0.1)T 620 539 553 551 603 627 61.0 561 662 50.2 52.2 57.7 W/ Lgiopal ONly (real — fake)  87.7  74.9 90.9 835 /53 86 807 846 865 905
Gragnaniello et al. T 541 580 611 575 569 596 588  71.7 57.1 50.1 50.9 57.8 w/ £9'°ba'_ only (pre-trained) 87.3 93.8 857 862 929 845 940 /66 /6.7 910
Corvi et al.t 521 993 993 993 580 591 623  89.4 49.6 829 98.3 77.2 CoDE (Linear) 98.0 94.0 99.0 95.7 956 958 948 958 949 975
Ojha et al.t T 69.5 944 740 950 /85 A1 779 873 601 535 53.9 74.8 W/ Lgobal ONly (real — fake) 762 751 765 739 753 735 683 703 739 815
Wang et al. (DIRE) 56.7 62.6 61.3 62.2 63.2 63.4 63.1 63.0 63.4 60.7 62.3 62.0 W/ Eglobal only (pre-trained) 96.1 86.8 98.4 942 86.5 96.2 953 96.0 95 .4 98.0
CoDE (Linear) 53.5 92.5 95.6 91.9 /1.7 75.4 72.9 63.1 71.4 86.7 84.0 /8.0 CoDE (NN) 97.3 89.3 99.3 95.8 90.5 97.1 96.6 97.3 96.6 98.1
CoDE (NN) 535 927 961 925 73.8 76.9 74.0 67.0 74.3 88.6 86.8 79.6
CODE (SVM) 546 91.0 904 909 772 788 776  76.1 802 91.0 89.7 81.6 W/ Lgiobal ONly (real — fake) ~ 80.1  86.7 78.5 749 86.2 721 662 678 712 834
w/ Lglobal ONly (pre-trained) 89.2 46.4 99.9 89.1 46.0 99.9 99.9 99.9 99.9 99.9
CoDE (SVM) 91.2 744 954 92.5 81.0 954 96.6 91.7 94.4 99.0
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